Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 92020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32720643

RESUMO

Inhibition of mTOR (mechanistic Target Of Rapamycin) signaling by rapamycin promotes healthspan and longevity more strongly in females than males, perhaps because inhibition of hepatic mTORC2 (mTOR Complex 2) specifically reduces the lifespan of males. Here, we demonstrate using gonadectomy that the sex-specific impact of reduced hepatic mTORC2 is not reversed by depletion of sex hormones. Intriguingly, we find that ovariectomy uncouples lifespan from metabolic health, with ovariectomized females having improved survival despite paradoxically having increased adiposity and decreased control of blood glucose levels. Further, ovariectomy unexpectedly promotes midlife survival of female mice lacking hepatic mTORC2, significantly increasing the survival of those mice that do not develop cancer. In addition to identifying a sex hormone-dependent role for hepatic mTORC2 in female longevity, our results demonstrate that metabolic health is not inextricably linked to lifespan in mammals, and highlight the importance of evaluating healthspan in mammalian longevity studies.


Assuntos
Envelhecimento/fisiologia , Castração/efeitos adversos , Hormônios Esteroides Gonadais/metabolismo , Longevidade/fisiologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Ovariectomia/efeitos adversos , Transdução de Sinais/fisiologia , Animais , Humanos , Fígado/enzimologia , Masculino , Camundongos , Modelos Animais , Fatores Sexuais
2.
J Gerontol A Biol Sci Med Sci ; 71(7): 876-81, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27091134

RESUMO

Inhibition of the mTOR (mechanistic target of rapamycin) signaling pathway by the FDA-approved drug rapamycin promotes life span in numerous model organisms and delays age-related disease in mice. However, the utilization of rapamycin as a therapy for age-related diseases will likely prove challenging due to the serious metabolic and immunological side effects of rapamycin in humans. We recently identified an intermittent rapamycin treatment regimen-2mg/kg administered every 5 days-with a reduced impact on glucose homeostasis and the immune system as compared with chronic treatment; however, the ability of this regimen to extend life span has not been determined. Here, we report for the first time that an intermittent rapamycin treatment regimen starting as late as 20 months of age can extend the life span of female C57BL/6J mice. Our work demonstrates that the anti-aging potential of rapamycin is separable from many of its negative side effects and suggests that carefully designed dosing regimens may permit the safer use of rapamycin and its analogs for the treatment of age-related diseases in humans.


Assuntos
Envelhecimento , Longevidade , Transdução de Sinais , Sirolimo , Serina-Treonina Quinases TOR/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Animais , Esquema de Medicação , Cronofarmacoterapia , Feminino , Transtornos do Metabolismo de Glucose/etiologia , Transtornos do Metabolismo de Glucose/prevenção & controle , Sistema Imunitário/efeitos dos fármacos , Imunossupressores/administração & dosagem , Imunossupressores/efeitos adversos , Imunossupressores/metabolismo , Longevidade/efeitos dos fármacos , Longevidade/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sirolimo/administração & dosagem , Sirolimo/efeitos adversos , Sirolimo/metabolismo , Resultado do Tratamento
3.
Aging Cell ; 15(1): 28-38, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26463117

RESUMO

Inhibition of the mechanistic target of rapamycin (mTOR) signaling pathway by the FDA-approved drug rapamycin has been shown to promote lifespan and delay age-related diseases in model organisms including mice. Unfortunately, rapamycin has potentially serious side effects in humans, including glucose intolerance and immunosuppression, which may preclude the long-term prophylactic use of rapamycin as a therapy for age-related diseases. While the beneficial effects of rapamycin are largely mediated by the inhibition of mTOR complex 1 (mTORC1), which is acutely sensitive to rapamycin, many of the negative side effects are mediated by the inhibition of a second mTOR-containing complex, mTORC2, which is much less sensitive to rapamycin. We hypothesized that different rapamycin dosing schedules or the use of FDA-approved rapamycin analogs with different pharmacokinetics might expand the therapeutic window of rapamycin by more specifically targeting mTORC1. Here, we identified an intermittent rapamycin dosing schedule with minimal effects on glucose tolerance, and we find that this schedule has a reduced impact on pyruvate tolerance, fasting glucose and insulin levels, beta cell function, and the immune system compared to daily rapamycin treatment. Further, we find that the FDA-approved rapamycin analogs everolimus and temsirolimus efficiently inhibit mTORC1 while having a reduced impact on glucose and pyruvate tolerance. Our results suggest that many of the negative side effects of rapamycin treatment can be mitigated through intermittent dosing or the use of rapamycin analogs.


Assuntos
Glicemia/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Sistema Imunitário/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sirolimo/efeitos adversos , Sirolimo/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Intolerância à Glucose/tratamento farmacológico , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Sirolimo/administração & dosagem , Sirolimo/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...